
OXPath: Everyone can Automate the Web!∗

Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart
Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

1. WHY: AUTOMATING WEB ACTIONS
Web data easily accessible to everyone is the Holy Grail 2.0.

Scientists need data to study, e.g, how people interact on web so-
cial networks, whereas web companies use profiling data to target
online ads or improve search results, and quantitative analyst ex-
amine streams of events to predict market variations. We all face
daily tasks (e.g., planning holidays or searching for a new cam-
era), for which web data (e.g, reviews) plays an important role. In
principle, all the necessary information is readily available on some
web page, yet manually accessing, extracting, and aggregating that
information is often infeasible due to the number of different sites
and the size of the involved data. This creates a new divide in data-
driven research and analysis between governments or large, web-
savvy companies that can exploit web data at scale and most other
entities or persons that do not have that ability.

Web data extraction addresses the problem of turning data acces-
sible through existing, human-oriented interfaces, into structured
data. For instance, each gray span HTML element with CSS class
source on Google News should be recognized as news source.
However existing tools for web data extraction are either research
prototypes not fit for everyday users or very expensive, commer-
cial applications that require significant resources for large scale
data extraction. Furthermore, they are usually not designed with
end users in mind, as commercial data extraction is primarily of-
fered as a service these days. Data extraction tools are also quickly
outpaced by the growth and change in web technologies.

2. WHAT: OXPATH
Therefore, we have introduced OXPath as a new generation tool

for scalable data extraction and automation. It builds on XPath, an
established, standard technology in the web, and is developed as
an open source tool by an international community. Furthermore,
we are currently developing a suite of end user tools that allow OX-
Path to be used by everyone regardless of the technical background,
including visual wrapper generator and easy cloud-based extrac-
tion. Of course, large scale data extraction will always require
some technical veracity, e.g., for storage, cleaning, and analysis of
the data. But with OXPath, we aim to make the use of web sites as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

data source just as easy as using a local database. More specifically,
OXPath extends XPath with only 4 concise extensions, yet provides
all that is necessary to deal with modern web applications:

(1) OXPath allows the simulation of user actions (e.g., click, form
filling) to interact with the scripted interfaces of web applications.

(2) In addition to the selection capabilities of XPath, OXPath al-
lows selection based on visual features by exposing all CSS prop-
erties. It is possible, e.g., to select elements by their color.

(3) OXPath deals with navigation through page sequences (multi-
way navigation, e.g., following multiple links from the same page,
and unbounded navigation sequences, e.g., following next links on
a result page until there is no further one.

(4) OXPath enables the identification of data for extraction, which
can be assembled into (hierarchical) records, regardless of its orig-
inal HTML structure.

All these features are achieved without sacrificing performance:
OXPath scales well both in time and in memory and uses very little
resources compared to other web data extraction tools. Specifically,
its memory requirements are independent of the number of pages
visited. To the best of our knowledge, OXPath is the first web extrac-
tion tool with such a guarantee [1]. Low resource usage is crucial
for use as an open information access tool, as it directly translates
into low cost for cloud extraction.

As a basic example, consider the following OXPath expression.

doc("news.google.com")//div[@class~="story"]:<story>
2 [.//h2:<title=string(.)>]

[.//span[style::color="#767676"]:<source=string(.)>]

It navigates on Google News, and extracts a story element for
each current news story on the page, along with its title and sources
(selected by color), producing:

<story><title >Tax cuts ...</title>
2 <source>Washington Post</source>

<source>Wall Street Journal</source> ... </story>

We provide an open source OXPath implementation available at
http://diadem-project.info/oxpath. Further, to support users
not familiar with OXPath, we have developed a visual tool to as-
sist building extraction tasks. Using Visual OXPath [2], without
any knowledge of OXPath, users can develop robust extraction ex-
pressions just with few clicks. Given only one example, (e.g., one
story on Google News), the tool exploits similarity to automatically
suggest the expression that selects all the stories on that page.

3. HOW: DEMONSTRATION EXAMPLE
To extract the most popular petitions on “Government&Politics”

listed on petitionspot.com, a user has to perform the following
sequence of actions to retrieve the page listing these petitions (see

{cl
ick

 /}

1

{click /}

2

{cl
ick

 /} 3

sign:
title:

start:

{click /}

5

statement:

{click/}*

4

Figure 1: Finding an OXPath through Petition.com

Figure 1): (1) Click “Browse” on the header menu, (2) click on
the link “Government&Politics” , and finally (3) click on the link
“Most Popular” to order the petitions by popularity. Then, for each
petition on that page, (4) click on its title to reach the details page
for retrieving the full statement. Finally, (5) click on the “Next”
link and repeat the same actions on the following pages.

The following is an OXPath expression that realizes this task, ex-
tracting relevant data for each petition.

doc("http://www.petitionspot.com/")//div#navigation//li[2]/a[1]/{click/}Ê
2 /(//a.gray)[6]/{click/}Ë
//a[starts-with(.,’Most Popular’)]/{click/}Ì

4 (//a/img[@alt=’Next’]{click/})*Í
//div.pad5/div:<petition>

6 [.//a:<title=string(.)>/{click/}Î
//div#p_content:<statement=string(.)>]

8 [.//div.green:<signatures=string(.)>]
[.//div.col_started:<start=string(.)>]

To identify the “Browse” link (Line 2), we adopt the # nota-
tion from CSS for selecting elements (div) with an id attribute
navigation. On our example, this identifies the header navigation
menu. Upon that, in step (1) we click on the second link (l1[2]/a),
to reach the following page. Step (2) (line 3) clicks on the sixth link
having a CSS class gray (a.gray), whereas on the returned page, we
click on the link whose text starts with “Most Popular” (3).

Before extracting the relevant data for each petition on the cur-
rent page, we instruct OXPath to iterate on all following pages, to
perform an exhaustive extraction. To this end, OXPath introduces
the Kleene star (path)* operator, to “repeat path until it matches”.
In our example, we continue clicking on the the “Next” link (step
(4), line 5), until any further is found.

On each page, we can extract the relevant data as follows. OX-
Path allows labelling data for extraction through extraction mark-
ers. We first identify petition boundaries as the div element with

class pad5. We label these records as petition using the record
extraction marker :<petition>. From there, we navigate to the con-
tained title links and extract their value as a title (:<title>) at-
tribute, and click (step (5) on the link to obtain the page for the
individual petition, where we find and extract its full statement. Fi-
nally, we extract the number of signatures and start date from the
previous page – without caring for the order in which the pages are
visited during extraction. OXPath buffers pages when necessary, yet
guarantees that the number of buffered pages is independent of the
number of visited pages.

It is worth emphasizing, that this example expression can be gen-
erated in visual OXPath by performing the form filling once, select-
ing one example for each attribute, and identifying the next link.
For all that, no knowledge of XPath or OXPath is required.

Acknowledgements
The research leading to these results has received funding from the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant agree-
ment DIADEM, no. 246858.

4. REFERENCES
[1] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and

A. Sellers. Oxpath: A language for scalable, memory-efficient
data extraction from web applications. In Proc.Int’l. Conf. on
Very Large Data Bases (VLDB), 2011.

[2] J. Kranzdorf, A. Sellers, G. Grasso, C. Schallhart, and
T. Furche. Spotting the tracks on the oxpath. In International
Conference on Word Wide Web (WWW 2012), (Companion
Volume), 2012.

