data science, digital politics, smart cities...|

Ideology and Social Structure on Twitter

Last week I was at the VOXPOL conference @ King’s College London. Vast majority of researchers were talking about terrorists and extremists, so I was a bit out of my field; though interestingly they were also all talking about big data and computational social science, which seems to be a staple in every social science conference these days. Ongoing debate about whether we need more teams of social scientists + computer scientists, or whether social scientists need to up their computing skills. I think both approaches are fine in the short term but in the long run social scientists need to skill up, as computer scientists won’t always be interested in our questions (we will want to use automatic content analysis in social science long after it becomes a boring topic in computer science, in the same way as we are still using the t test).


I gave a presentation on the relationship between ideology and social structure on twitter, arguing that political groups at the ideological extremes are more likely to exhibit closed and centralising communication patterns than those in the middle, which is an early result from a join project between myself, Diego Garzia and Alex Trechsel. The main point of the presentation was to discuss different ways of measuring closure and centralisation, which I’m still not sure about. Luckily most of our measures point in a similar direction, so I’m pretty sure there’s an interesting result in there somewhere.